

trio-asyncio: A re-implementation of the asyncio mainloop on top of Trio

trio-asyncio is the library of choice for a Python program that
contains both Trio [https://trio.readthedocs.io/en/stable/] and
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] code.

Trio has native concepts of tasks and task cancellation. Asyncio is based
on callbacks and chaining Futures, albeit with nicer syntax, which make
handling of failures and timeouts fundamentally less reliable, especially in
larger programs. Thus, you really want to use Trio in your project.

On the other hand, there are quite a few robust libraries that have been
implemented using asyncio, while Trio’s ecosystem is relatively younger. You
really don’t want to re-invent any wheels in your project.

Thus, being able to use asyncio libraries from Trio is useful.
trio-asyncio enables you to do that, and more.

With trio-asyncio, you can:

	Incrementally convert an asyncio application to Trio. Start with a
Trio mainloop, call your existing asyncio code, then successively
convert procedures to Trio calling conventions.

	Use any asyncio-capable library in a Trio application.

	Use trio-asyncio as a building block for convincing other async-ish
libraries (Twisted, Promise, …) to be compatible with Trio.

trio-asyncio is tested against the complete asyncio test suite as
shipped with each supported version of Python, although a small number of tests
fail due to our limited support for starting and stopping the same event
loop multiple times. It has also passed the test suite of some complex
asyncio libraries such as home-assistant.

Note

trio-asyncio is most useful for applications: it works best
when you control the code that starts the event loop (such as
the call to asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run]). If you’re writing a library and
want to adopt a Trio-ish worldview without sacrificing asyncio
compatibility, you might find anyio [https://anyio.readthedocs.io/en/latest/]
helpful.

Helpful facts:

	Supported environments: Linux, MacOS, or Windows running some kind of Python
3.7-or-better (either CPython or PyPy3 is fine). *BSD and illumOS likely
work too, but are untested.

	Install: python3 -m pip install -U trio-asyncio (or on Windows, maybe
py -3 -m pip install -U trio-asyncio). No compiler needed.

	Tutorial and reference manual: https://trio-asyncio.readthedocs.io

	Bug tracker and source code: https://github.com/python-trio/trio-asyncio

Inherited from Trio [https://github.com/python-trio/trio]:

	Real-time chat: https://gitter.im/python-trio/general

	License: MIT or Apache 2, your choice

	Contributor guide: https://trio.readthedocs.io/en/latest/contributing.html

	Code of conduct: Contributors are requested to follow our code of
conduct [https://trio.readthedocs.io/en/latest/code-of-conduct.html]
in all project spaces.

trio-asyncio manual

	Principles
	Async function “flavors”

	Flavor versus context

	Flavor transitions are explicit

	trio-asyncio’s place in the asyncio stack

	Event loop implementations

	Usage
	Startup and shutdown

	Cross-calling

	asyncio feature support notes

	Low-level API reference

	Release history
	trio-asyncio 0.15.0 (2024-04-24)

	trio-asyncio 0.14.1 (2024-04-18)

	trio-asyncio 0.14.0 (2024-02-07)

	trio-asyncio 0.13.0 (2023-12-01)

	trio-asyncio 0.12.0 (2021-01-07)

	trio-asyncio 0.11.0 (2020-03-09)

	trio-asyncio 0.10.0 (2018-12-09)

	trio-asyncio 0.9.1 (2018-09-06)

	trio-asyncio 0.9.0 (2018-08-31)

	trio-asyncio 0.8.2 (2018-08-25)

	trio-asyncio 0.8.1 (2018-08-25)

	trio-asyncio 0.8.0 (2018-08-03)

	trio-asyncio 0.7.5 (2018-07-23)

	trio-asyncio 0.7.0 (2018-03-27)

	trio-asyncio 0.5.0 (2018-02-20)

	trio-asyncio 0.4.2 (2018-02-12)

	trio-asyncio 0.4.1 (2018-02-08)

	trio-asyncio 0.4.0 (2018-02-07)

	trio-asyncio 0.3.0 (2017-10-17)

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

Principles

Async function “flavors”

As you might recall from the discussion of async “sandwiches” in the
Trio tutorial [https://trio.readthedocs.io/en/stable/tutorial.html#async-sandwich],
every async function ultimately must do its useful work by directly or
indirectly calling back into the same async library (such as asyncio
or Trio) that’s managing the currently running event loop. If a
function invoked within a trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run] calls
asyncio.sleep() [https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep], or a function invoked within an
asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run] calls trio.sleep() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.sleep], the sleep function will
send a message to the event loop that the event loop doesn’t know how
to handle, and some sort of error will result.

In a program that uses trio-asyncio, you probably have some async
functions implemented in terms of Trio calls and some implemented in
terms of asyncio calls. In order to keep track of which is which,
we’ll call these “Trio-flavored” and “asyncio-flavored” functions,
respectively. It is critical that you understand which functions in
your program are Trio-flavored and which are asyncio-flavored, just
like it’s critical that you understand which functions are synchronous
and which ones are async. Unfortunately, there’s no syntactic marker
for flavor: both Trio-flavored and asyncio-flavored functions are
defined with async def fn() and call other async functions with
await other_fn(). You’ll have to keep track of it some other
way. To help you out, every function in trio-asyncio documents its
flavor, and we recommend that you follow this convention in your own
programs too.

The general rules that determine flavor are as follows:

	Every async function in the trio module is Trio-flavored.
Every async function in the asyncio module is asyncio-flavored.

	Flavor is transitive: if async function foo() calls await
bar(), then foo() has bar()’s flavor. (If foo()
calls await baz() too, then bar() and baz() had better
have the same flavor.)

	trio-asyncio gives you the ability to call functions whose flavor is
different than your own, but you must be explicit about it.
trio_asyncio.aio_as_trio() takes an asyncio-flavored function
and returns a Trio-flavored wrapper for it;
trio_as_aio() takes a Trio-flavored function and
returns an asyncio-flavored wrapper for it.

If you don’t keep track of your function flavors correctly, you might
get exceptions like the following:

	If you call a Trio function where an asyncio function is expected: RuntimeError:
Task got bad yield: followed by either WaitTaskRescheduled(abort_func=...)
or <class 'trio._core._traps.CancelShieldedCheckpoint'>

	If you call an asyncio function where a Trio function is expected: TypeError:
trio.run received unrecognized yield message <Future ...>.

Other errors are possible too.

Flavor versus context

The concept of function flavor is distinct from the concept of
“asyncio context” or “Trio context”. You’re in Trio context if you’re
(indirectly) inside a call to trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run]. You’re in asyncio
context if asyncio.get_running_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_running_loop] returns a valid event
loop. In a trio-asyncio program, you will frequently be in both Trio
context and asyncio context at the same time, but each async function is
either Trio-flavored or asyncio-flavored (not both).

Most synchronous asyncio or Trio functions (trio.Event.set() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Event.set],
asyncio.StreamWriter.close() [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.close], etc) only require you to be in
asyncio or Trio context, and work equally well regardless of the
flavor of function calling them. The exceptions are functions that
access the current task (asyncio.current_task() [https://docs.python.org/3/library/asyncio-task.html#asyncio.current_task],
trio.lowlevel.current_task() [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.current_task], and anything that calls them),
because there’s only a meaningful concept of the current foo task
when a foo-flavored function is executing. For example, this means
context managers that set a timeout on their body (with
async_timeout.timeout(N):, with trio.move_on_after(N):) must be
run from within the correct flavor of function.

Flavor transitions are explicit

As mentioned above, trio-asyncio does not generally allow you to
transparently call await trio.something() from asyncio code, nor
vice versa; you need to use aio_as_trio() or
trio_as_aio() when calling a function whose flavor is
different than yours. This is certainly more frustrating than having
it “just work”. Unfortunately, semantic differences between Trio and
asyncio (such as how to signal cancellation) need to be resolved at
each boundary between asyncio and Trio, and we haven’t found a way to
do this with acceptable performance and robustness unless those
boundaries are marked.

If you insist on living on the wild side, trio-asyncio does provide
allow_asyncio() which allows limited,
experimental, and slow mixing of Trio-flavored and asyncio-flavored
calls in the same Trio-flavored function.

trio-asyncio’s place in the asyncio stack

At its base, asyncio doesn’t know anything about futures or
coroutines, nor does it have any concept of a task. All of these
features are built on top of the simpler interfaces provided by the
event loop. The event loop itself has little functionality beyond executing
synchronous functions submitted with call_soon() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon]
and call_later() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_later]
and invoking I/O availability callbacks registered using
add_reader() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_reader] and add_writer() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_writer]
at the appropriate times.

trio-asyncio provides an asyncio event loop implementation which
performs these basic operations using Trio APIs. Everything else in
asyncio (futures, tasks, cancellation, and so on) is ultimately
implemented in terms of calls to event loop methods, and thus works
“magically” with Trio once the trio-asyncio event loop is
installed. This strategy provides a high level of compatibility with
asyncio libraries, but it also means that asyncio-flavored code
running under trio-asyncio doesn’t benefit much from Trio’s more
structured approach to concurrent programming: cancellation,
causality, and exception propagation in asyncio-flavored code are just
as error-prone under trio-asyncio as they are under the default
asyncio event loop. (Of course, your Trio-flavored code will still
benefit from all the usual Trio guarantees.)

If you look at a Trio task tree, you’ll see only one Trio task for the
entire asyncio event loop. The distinctions between different asyncio
tasks are erased, because they’ve all been merged into a single pot of
callback soup by the time they get to trio-asyncio. Similarly, context
variables will only work properly in asyncio-flavored code when
running Python 3.7 or later (where they’re supported natively), even
though Trio supports them on earlier Pythons using a backport package.

Event loop implementations

A stock asyncio event loop may be interrupted and restarted at any
time, simply by making repeated calls to run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete].
Trio, however, requires one long-running main loop. trio-asyncio bridges
this gap by providing two event loop implementations.

	The preferred option is to use an “async loop”: inside a
Trio-flavored async function, write async with
trio_asyncio.open_loop() as loop:. Within the async with
block (and anything it calls, and any tasks it starts, and so on),
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] and asyncio.get_running_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_running_loop]
will return loop. You can’t manually start and stop an async
loop. Instead, it starts when you enter the async with block and
stops when you exit the block.

	The other option is a “sync loop”.
If you’ve imported trio-asyncio but aren’t in Trio context, and you haven’t
installed a custom event loop policy, calling asyncio.new_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.new_event_loop]
(including the implicit call made by the first asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop]
in the main thread) will give you an event loop that transparently runs
in a separate greenlet in order to support multiple
calls to run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete],
run_forever() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_forever], and stop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.stop].
Sync loops are intended to allow trio-asyncio to run the existing
test suites of large asyncio libraries, which often call
run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete] on the same loop multiple times.
Using them for other purposes is not recommended (it is better to refactor
so you can use an async loop) but will probably work.

Usage

Using trio [https://trio.readthedocs.io/en/stable/reference-core.html#module-trio] from asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio], or vice versa, requires two steps:

	Set up a main loop that supports both

	Use cross-domain function calls

Because Trio and asyncio differ in some key semantics, most notably
how they handle tasks and cancellation, usually their domains are
strictly separated – i.e., you need to call a wrapper that translates
from one to the other. While trio-asyncio includes a wrapper that
allows you ignore that separation in some limited cases, you probably
should not use it in non-trivial programs.

Startup and shutdown

Trio main loop

Typically, you start with a Trio program which you need to extend with
asyncio code.

Before:

import trio

trio.run(async_main, *args)

After:

import trio
import trio_asyncio

trio_asyncio.run(async_main, *args)

Note that async_main here still must be a Trio-flavored async function!
trio_asyncio.run() is trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run] plus an additional asyncio
context (which you can take advantage of using aio_as_trio()).

Equivalently, wrap your main function (or any other code that needs to talk to
asyncio) in a trio_asyncio.open_loop() block:

import trio
import trio_asyncio

async def async_main_wrapper(*args):
 async with trio_asyncio.open_loop() as loop:
 assert loop == asyncio.get_event_loop()
 await async_main(*args)

trio.run(async_main_wrapper, *args)

In either case, within async_main, calls to
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] will return the currently-running
TrioEventLoop instance. (Since asyncio code uses the result of
get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] as the default event loop in
effectively all cases, this means you don’t need to pass loop=
arguments around explicitly.)

TrioEventLoop has a few trio-asyncio specific methods in addition to
the usual asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop] interface; these are documented
in the appropriate sections below. In general you don’t need to care
about any of them, though, as you can just use
aio_as_trio() to run asyncio code. (See
below for more details.)

	
async with trio_asyncio.open_loop(queue_len=None)

	Returns a Trio-flavored async context manager which provides
an asyncio event loop running on top of Trio.

The context manager evaluates to a new TrioEventLoop object.

Entering the context manager is not enough on its own to immediately
run asyncio code; it just provides the context that makes running that
code possible. You additionally need to wrap any asyncio functions
that you want to run in aio_as_trio().

If you provide a queue_len, then any attempt to enqueue more
than that many asyncio callbacks near-simultaneously (including,
for example, new task creations) will fail. There is no way to
backpressure asyncio callback registration, so the best we can
do if the queue length is exceeded is raise an exception
(trio.WouldBlock [https://trio.readthedocs.io/en/stable/reference-core.html#trio.WouldBlock]), which is likely to crash your whole program.
It is suggested to leave the queue_len at its default of None
(unlimited) unless you need to enforce hard constraints on memory use.

Exiting the context manager will attempt to do an orderly shutdown
of the tasks it contains, analogously to asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run].
Both asyncio-flavored tasks and Trio-flavored tasks (the latter
started using trio_as_future(),
run_trio_task(), trio_as_aio(),
etc) are cancelled simultaneously, and the loop waits for them to
exit in response to this cancellation before proceeding. All
call_soon() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon] callbacks that are submitted
before exiting the context manager will run before starting this
shutdown sequence, and all callbacks that are submitted before the
last task exits will run before the loop closes. The exact point
at which the loop stops running callbacks is not specified.

Warning

As with asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run], asyncio-flavored tasks
that are started after exiting the context manager (such as by
another task as it unwinds) may or may not be cancelled, and will
be abandoned if they survive the shutdown sequence. This may lead
to unclosed resources, stderr spew about “coroutine ignored
GeneratorExit”, etc. Trio-flavored tasks do not have this hazard.

Example usage:

async def async_main(*args):
 async with trio_asyncio.open_loop() as loop:
 # async part of your main program here
 await trio.sleep(1)
 await trio_asyncio.aio_as_trio(asyncio.sleep)(2)

	
trio_asyncio.run(proc, *args, queue_len=None, **trio_run_options)

	Run a Trio-flavored async function in a context that has an
asyncio event loop also available.

This is exactly equivalent to using trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run] plus wrapping
the body of proc in async with trio_asyncio.open_loop():.
See the documentation of open_loop() for more on the queue_len
argument, which should usually be left at its default of None.

Stopping

The asyncio mainloop will be stopped automatically when the code within
async with open_loop() / trio_asyncion.run() exits. trio-asyncio
will process all outstanding callbacks and terminate. As in asyncio,
callbacks which are added during this step will be ignored.

You cannot restart the loop, nor would you want to. You can always make
another loop if you need one.

Asyncio main loop

Sometimes you instead start with asyncio code which you wish to extend
with some Trio portions. The best-supported approach here is to
wrap your entire asyncio program in a Trio event loop. In other words,
you should transform this code:

def main():
 loop = asyncio.get_event_loop()
 loop.run_until_complete(async_main())

or (Python 3.7 and later):

def main():
 asyncio.run(async_main())

to this:

def main():
 trio_asyncio.run(trio_asyncio.aio_as_trio(async_main))

If your program makes multiple calls to run_until_complete() and/or
run_forever(), or if the call to asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run] is hidden inside
a library you’re using, then this may be a somewhat challenging transformation.
In such cases, you can instead keep the old approach (get_event_loop() +
run_until_complete()) unchanged, and if you’ve imported trio_asyncio
(and not changed the asyncio event loop policy) you’ll still be able to use
trio_as_aio() to run Trio code from within your
asyncio-flavored functions. This is referred to internally as a “sync loop”
(SyncTrioEventLoop), as contrasted with the “async loop” that you use
when you start from an existing Trio run. The sync loop is implemented using
the greenlet library to switch out of a Trio run that has not yet completed,
so it is less well-supported than the approach where you start in Trio.
But as of trio-asyncio 0.14.0, we do think it should generally work.

Compatibility issues

Loop implementations

There are replacement event loops for asyncio, such as uvloop.
trio-asyncio is not compatible with them.

Multithreading

trio-asyncio monkey-patches asyncio’s loop policy to be thread-local.
This lets you use uvloop in one thread while running trio_asyncio
in another.

Interrupting the asyncio loop

A trio-asyncio event loop created with open_loop() does not support
run_until_complete or run_forever. If you need these features,
you might be able to get away with using a “sync loop” as
explained above, but it’s better to refactor
your program so all of its async code runs within a single event loop
invocation. For example, you might replace:

async def setup():
 pass # … start your services
async def shutdown():
 pass # … terminate services and clean up
 loop.stop()

loop = asyncio.get_event_loop()
loop.run_until_complete(setup)
loop.run_forever()

with:

stopped_event = trio.Event()
async def setup():
 pass # … start your services
async def cleanup():
 pass # … terminate services and clean up
async def shutdown():
 stopped_event.set()

async def async_main():
 await aio_as_trio(setup)()
 await stopped_event.wait()
 await aio_as_trio(cleanup)()
trio_asyncio.run(async_main)

Detecting the current function’s flavor

sniffio.current_async_library() [https://sniffio.readthedocs.io/en/latest/index.html#sniffio.current_async_library] correctly reports “asyncio” or
“trio” when called from a trio-asyncio program, based on the flavor of
function that’s calling it.

However, this feature should generally not be necessary, because you
should know whether each function in your program is asyncio-flavored
or Trio-flavored. (The two have different semantics, especially
surrounding cancellation.) It’s provided mainly so that your
trio-asyncio program can safely depend on libraries that use sniffio [https://sniffio.readthedocs.io/en/latest/index.html#module-sniffio]
to support both flavors. It can also be helpful if you want to assert
that you’re in the mode you think you’re in, using

assert sniffio.current_async_library() == "trio"

(or "asyncio") to detect mismatched flavors while porting code
from asyncio to Trio.

Cross-calling

First, a bit of background.

For historical reasons, calling an async function (of any
flavor) is a two-step process – that is, given

async def proc():
 pass

a call to await proc() does two things:

	proc() returns an awaitable, i.e. something that has an
__await__ method.

	await proc() then hooks this awaitable up to your event loop,
so that it can do whatever combination of execution and cooperative
blocking it desires. (Technically, __await__() returns an iterable,
which is iterated until it has been exhausted, and each yielded object
is sent through to the event loop.)

asyncio traditionally uses awaitables for indirect procedure calls,
so you often see the pattern:

async def some_code():
 pass
async def run(proc):
 await proc
await run(some_code())

This method has a problem: it decouples creating the awailable from running
it. If you decide to add code to run that retries running proc when
it encounters a specific error, you’re out of luck.

Trio, in contrast, uses (async) callables:

async def some_code():
 pass
async def run(proc):
 await proc()
await run(some_code)

Here, calling proc multiple times from within run is not a problem.

trio-asyncio adheres to Trio conventions, but the
asyncio way is also supported when possible.

Calling asyncio from Trio

Wrap the callable, awaitable, generator, or iterator in
trio_asyncio.aio_as_trio().

Thus, you can call an asyncio function from Trio as follows:

async def aio_sleep(sec=1):
 await asyncio.sleep(sec)
async def trio_sleep(sec=2):
 await aio_as_trio(aio_sleep)(sec)
trio_asyncio.run(trio_sleep, 3)

or use as a decorator to pre-wrap:

@aio_as_trio
async def trio_sleep(sec=1):
 await asyncio.sleep(sec)
trio_asyncio.run(trio_sleep, 3)

or pass an awaitable:

async def aio_sleep(sec=1):
 await asyncio.sleep(sec)
async def trio_sleep(sec=2):
 await aio_as_trio(aio_sleep(sec))
trio_asyncio.run(trio_sleep, 3)

If you have a choice between aio_as_trio(foo)(bar) and
aio_as_trio(foo(bar)), choose the former. If foo() is an async
function defined with async def, it doesn’t matter; they behave
equivalently. But if foo() is a synchronous wrapper that does
anything before delegating to an async function, the first approach
will let the synchronous part of foo() determine the current
asyncio task, and the second will not. The difference is relevant in
practice for popular libraries such as aiohttp.

aio_as_trio() also accepts asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]s:

async def aio_sleep(sec=1):
 await asyncio.sleep(sec)
 return 42
async def trio_sleep(sec=2):
 f = aio_sleep(1)
 f = asyncio.ensure_future(f)
 r = await aio_as_trio(f)
 assert r == 42
trio_asyncio.run(trio_sleep, 3)

as well as async iterators (such as async generators):

async def aio_slow():
 n = 0
 while True:
 await asyncio.sleep(n)
 yield n
 n += 1
async def printer():
 async for n in aio_as_trio(aio_slow()):
 print(n)
trio_asyncio.run(printer)

and async context managers:

class AsyncCtx:
 async def __aenter__(self):
 await asyncio.sleep(1)
 return self
 async def __aexit__(self, *tb):
 await asyncio.sleep(1)
 async def delay(self, sec=1):
 await asyncio.sleep(sec)
async def trio_ctx():
 async with aio_as_trio(AsyncCtx()) as ctx:
 print("within")
 await aio_as_trio(ctx.delay)(2)
trio_asyncio.run(trio_ctx)

As you can see from the above example,
aio_as_trio() handles wrapping the context entry
and exit, but it doesn’t know anything about async methods that may
exist on the object to which the context evaluates. You still need to
treat them as asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] methods and wrap them appropriately when
you call them.

Note that creating the async context manager or async iterator is
not itself an asynchronous process; i.e., AsyncCtx.__init__ or
__aiter__ is a normal synchronous procedure. Only the
__aenter__ and __aexit__ methods of an async context manager,
or the __anext__ method of an async iterator, are
asynchronous. This is why you need to wrap the context manager or
iterator itself – unlike with a simple procedure call, you cannot
wrap the call for generating the context handler.

Thus, the following code will not work:

async def trio_ctx():
 async with aio_as_trio(AsyncCtx)() as ctx: # no!
 print("within")
 async for n in aio_as_trio(aio_slow)(): # also no!
 print(n)

	
trio_asyncio.aio_as_trio(proc, *, loop=None)

	Return a Trio-flavored wrapper for an asyncio-flavored awaitable,
async function, async context manager, or async iterator.

Alias: asyncio_as_trio()

This is the primary interface for calling asyncio code from Trio code.
You can also use it as a decorator on an asyncio-flavored async function;
the decorated function will be callable from Trio-flavored code without
additional boilerplate.

Note that while adapting coroutines, i.e.:

await aio_as_trio(proc(*args))

is supported (because asyncio uses them a lot) they’re not a good
idea because setting up the coroutine won’t run within an asyncio
context. If possible, use:

await aio_as_trio(proc)(*args)

instead.

Too complicated?

There’s also a somewhat-magic wrapper (trio_asyncio.allow_asyncio())
which, as the name implies, allows you to directly call asyncio-flavored
functions from a function that is otherwise Trio-flavored.

async def hybrid():
 await trio.sleep(1)
 await asyncio.sleep(1)
 print("Well, that worked")
trio_asyncio.run(trio_asyncio.allow_asyncio, hybrid)

This method works for one-off code. However, there are a couple of
semantic differences between asyncio and Trio which
trio_asyncio.allow_asyncio() is unable to account for.
Additionally, the transparency support is only one-way; you can’t
transparently call Trio from a function that’s used by asyncio
callers. Thus, you really should not use it for “real” programs or
libraries.

	
await trio_asyncio.allow_asyncio(fn, *args)

	Execute await fn(*args) in a context that allows fn to call
both Trio-flavored and asyncio-flavored functions without marking
which ones are which.

This is a Trio-flavored async function. There is no asyncio-flavored
equivalent.

This wrapper allows you to indiscrimnately mix trio [https://trio.readthedocs.io/en/stable/reference-core.html#module-trio] and
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] functions, generators, or iterators:

import trio
import asyncio
import trio_asyncio

async def hello(loop):
 await asyncio.sleep(1)
 print("Hello")
 await trio.sleep(1)
 print("World")

async def main():
 with trio_asyncio.open_loop() as loop:
 await trio_asyncio.allow_asyncio(hello, loop)
trio.run(main)

Unfortunately, there are issues with cancellation (specifically,
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] function will see trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled] instead of
concurrent.futures.CancelledError [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.CancelledError]). Thus, this mode is not the default.

Calling Trio from asyncio

Wrap the callable, generator, or iterator in
trio_asyncio.trio_as_aio().

Thus, you can call a Trio function from asyncio as follows:

async def trio_sleep(sec=1):
 await trio.sleep(sec)
async def aio_sleep(sec=2):
 await trio_as_aio(trio_sleep)(sec)
trio_asyncio.run(aio_as_trio, aio_sleep, 3)

or use a decorator to pre-wrap:

@trio_as_aio
async def aio_sleep(sec=2):
 await trio.sleep(sec)
trio_asyncio.run(aio_as_trio, aio_sleep, 3)

In contrast to aio_as_trio(), using an awaitable is not
supported because that’s not an idiom Trio uses.

Calling a function wrapped with trio_as_aio() returns a
regular asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]. Thus, you can call it from a synchronous
context (e.g. a callback hook). Of course, you’re responsible for catching
any errors – either arrange to await the future, or use
add_done_callback() [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future.add_done_callback]:

async def trio_sleep(sec=1):
 await trio.sleep(sec)
 return 42
def cb(f):
 assert f.result == 42
async def aio_sleep(sec=2):
 f = trio_as_aio(trio_sleep)(1)
 f.add_done_callback(cb)
 r = await f
 assert r == 42
trio_asyncio.run(aio_as_trio, aio_sleep, 3)

You can wrap async context managers and async iterables just like with
aio_as_trio().

	
trio_asyncio.trio_as_aio(proc, *, loop=None)

	Return an asyncio-flavored wrapper for a Trio-flavored async
function, async context manager, or async iterator.

Alias: trio_as_asyncio()

This is the primary interface for calling Trio code from asyncio code.
You can also use it as a decorator on a Trio-flavored async function;
the decorated function will be callable from asyncio-flavored code without
additional boilerplate.

Note that adapting coroutines, i.e.:

await trio_as_aio(proc(*args))

is not supported, because Trio does not expose the existence of coroutine
objects in its API. Instead, use:

await trio_as_aio(proc)(*args)

Or if you already have proc(*args) as a single object coro for
some reason:

await trio_as_aio(lambda: coro)()

Warning

Be careful when using this to wrap an async context manager.
There is currently no mechanism for running the entry and exit in
the same Trio task, so if the async context manager wraps a nursery,
havoc is likely to result. That is, instead of:

async def some_aio_func():
 async with trio_asyncio.trio_as_aio(trio.open_nursery()) as nursery:
 # code that uses nursery -- this will blow up

do something like:

async def some_aio_func():
 @trio_asyncio.aio_as_trio
 async def aio_body(nursery):
 # code that uses nursery -- this will work

 @trio_asyncio.trio_as_aio
 async def trio_body():
 async with trio.open_nursery() as nursery:
 await aio_body(nursery)

 await trio_body()

Trio background tasks

If you want to start a Trio task that should be monitored by trio_asyncio
(i.e. an uncaught error will propagate to, and terminate, the asyncio event
loop) instead of having its result wrapped in a asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future], use
run_trio_task().

Multiple asyncio loops

trio-asyncio supports running multiple concurrent asyncio loops in different
Trio tasks in the same thread. You may even nest them.

This means that you can write a trio-ish wrapper around an asyncio-using
library without regard to whether the main loop or another library also use
trio-asyncio.

You can use the event loop’s
autoclose() method to tell
trio-asyncio to auto-close a file descriptor when the loop
terminates. This setting only applies to file descriptors that have
been submitted to a loop’s add_reader() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_reader] or
add_writer() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_writer] methods. As such, this method is
mainly useful for servers and should be used to supplement, rather
than replace, a finally: handler or a with closing(...):
block.

Errors and cancellations

Errors and cancellations are propagated almost-transparently.

For errors, this is straightforward: if a cross-called function terminates
with an exception, it continues to propagate out of the cross-call.

Cancellations are also propagated whenever possible. This means

	the task started with run_trio() is cancelled when you cancel
the future which run_trio() returns

	if the task started with run_trio() is cancelled,
the future gets cancelled

	the future passed to run_aio_future() is cancelled when the Trio code
calling it is cancelled

	However, when the future passed to run_aio_future() is cancelled (i.e.,
when the task associated with it raises asyncio.CancelledError), that
exception is passed along unchanged.

This asymmetry is intentional since the code that waits for the future
often is not within the cancellation context of the part that
created it. Cancelling the future would thus impact the wrong (sub)task.

asyncio feature support notes

Deferred calls

call_soon() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon] and friends work as usual.

Worker threads

run_in_executor() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor] works as usual.

There is one caveat: the executor must be either None or an instance of
trio_asyncio.TrioExecutor.

	
class trio_asyncio.TrioExecutor(limiter=None, thread_name_prefix=None, max_workers=None)

	An executor that runs its job in a Trio worker thread.

Bases: concurrent.futures.ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor]

	Parameters:

	
	limiter (trio.CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter] or None) – If specified, use this
capacity limiter to control the number of threads in which
this exeuctor can be running jobs.

	thread_name_prefix – unused

	max_workers (int [https://docs.python.org/3/library/functions.html#int] or None) – If specified and limiter is not specified,
create a new trio.CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter] with this value as its limit,
and use that as the limiter.

File descriptors

add_reader() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_reader] and
add_writer() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_writer] work as usual, if you really
need them. Behind the scenes, these calls create a Trio task which waits
for readability/writability and then runs the callback.

You might consider converting code using these calls to native Trio tasks.

Signals

add_signal_handler() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.add_signal_handler] works as usual.

Subprocesses

create_subprocess_exec() [https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.create_subprocess_exec] and
create_subprocess_shell() [https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.create_subprocess_shell] work as usual.

You might want to convert these calls to use native Trio subprocesses.

Custom child watchers are not supported.

Low-level API reference

	
class trio_asyncio.BaseTrioEventLoop(queue_len=None)

	An asyncio event loop that runs on top of Trio.

Bases: asyncio.SelectorEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop]

All event loops created by trio-asyncio are of a type derived from
BaseTrioEventLoop.

	Parameters:

	queue_len – The maximum length of the internal event queue.
The default of None means unlimited. A limit should be specified
only if you would rather crash your program than use too
much memory, because it’s not feasible to enforce graceful
backpressure here.

	
staticmethod run_aio_future(fut)

	Alias for trio_asyncio.run_aio_future().

This is a Trio-flavored async function.

	
await run_aio_coroutine(coro)

	Schedule an asyncio-flavored coroutine for execution on this loop
by wrapping it in an asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task]. Wait for it to complete,
then return or raise its result.

Cancelling the current Trio scope will cancel the coroutine,
which will throw a single asyncio.CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] into the coroutine
(just like the usual asyncio behavior). If the coroutine then
exits with a CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] exception, the call to
run_aio_coroutine() will raise trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled].
But if it exits with CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] when the current
Trio scope was not cancelled, the CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] will
be passed along unchanged.

This is a Trio-flavored async function.

	
trio_as_future(proc, *args)

	Start a new Trio task to run await proc(*args) asynchronously.
Return an asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] that will resolve to the value or exception
produced by that call.

Errors raised by the Trio call will only be used to resolve
the returned Future; they won’t be propagated in any other
way. Thus, if you want to notice exceptions, you had better
not lose track of the returned Future. The easiest way to do this is
to immediately await it in an asyncio-flavored function:
await loop.trio_as_future(trio_func, *args).

Note that it’s the awaiting of the returned future, not the
call to trio_as_future() itself, that’s
asyncio-flavored. You can call trio_as_future() in a
Trio-flavored function or even a synchronous context, as long
as you plan to do something with the returned Future other
than immediately awaiting it.

Cancelling the future will cancel the Trio task running your
function, or prevent it from starting if that is still possible.
If the Trio task exits due to this cancellation, the future
will resolve to an asyncio.CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError].

	Parameters:

	
	proc – a Trio-flavored async function

	args – arguments for proc

	Returns:

	an asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] which will resolve to the result of the call to proc

	
run_trio_task(proc, *args)

	Start a new Trio task to run await proc(*args) asynchronously.
If it raises an exception, allow the exception to propagate out of
the trio-asyncio event loop (thus terminating it).

	Parameters:

	
	proc – a Trio-flavored async function

	args – arguments for proc

	Returns:

	an asyncio.Handle [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Handle] which can be used to cancel the background task

	
await synchronize()

	Suspend execution until all callbacks previously scheduled using
call_soon() have been processed.

This is a Trio-flavored async function.

From asyncio, call await trio_as_aio(loop.synchronize)()
instead of await asyncio.sleep(0) if you need to process all
queued callbacks.

	
autoclose(fd)

	Mark a file descriptor so that it’s auto-closed along with this loop.

This is a safety measure. You also should use appropriate
finalizers.

Calling this method twice on the same file descriptor has no effect.

	Parameters:

	fd – Either an integer (Unix file descriptor) or an object
with a fileno method providing one.

	
no_autoclose(fd)

	Un-mark a file descriptor so that it’s no longer auto-closed
along with this loop.

Call this method either before closing the file descriptor, or when
passing it to code out of this loop’s scope.

	Parameters:

	fd – Either an integer (Unix file descriptor) or an object
with a fileno() method providing one.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if the descriptor is not marked to be auto-closed.

	
await wait_stopped()

	Wait until the event loop has stopped.

This is a Trio-flavored async function. You should call it from
somewhere outside the async with open_loop() block to avoid
a deadlock (the event loop can’t stop until all Trio tasks started
within its scope have exited).

	
class trio_asyncio.TrioEventLoop(queue_len=None)

	Bases: BaseTrioEventLoop

An asyncio event loop that runs on top of Trio, opened from
within Trio code using open_loop().

	
trio_asyncio.current_loop

	A contextvars.ContextVar [https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar] whose value is the TrioEventLoop
created by the nearest enclosing async with open_loop():
block. This is the same event loop that will be returned by calls
to asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop]. If current_loop’s value is
None, then asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] will raise an error
in Trio context. (Outside Trio context its value is always
None and asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] uses differnet logic.)

It is OK to modify this if you want the current scope to use a different
trio-asyncio event loop, but make sure not to let your modifications leak
past their intended scope.

	
await trio_asyncio.run_aio_future(future)

	Wait for an asyncio-flavored future to become done, then return
or raise its result.

Cancelling the current Trio scope will cancel the future. If this
results in the future resolving to an asyncio.CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError]
exception, the call to run_aio_future() will raise
trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled]. But if the future resolves to
CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] when the current Trio scope was not
cancelled, the CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] will be passed along
unchanged.

This is a Trio-flavored async function.

	
async for ... in trio_asyncio.run_aio_generator(loop, async_generator)

	Return a Trio-flavored async iterator which wraps the given
asyncio-flavored async iterator (usually an async generator, but
doesn’t have to be). The asyncio tasks that perform each iteration
of async_generator will run in loop.

	
await trio_asyncio.run_aio_coroutine(coro)

	Alias for a call to run_aio_coroutine()
on the event loop returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop].

This is a Trio-flavored async function which takes an asyncio-flavored
coroutine object.

	
trio_asyncio.run_trio(proc, *args)

	Alias for a call to trio_as_future()
on the event loop returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop].

This is a synchronous function which takes a Trio-flavored async function
and returns an asyncio Future.

	
trio_asyncio.run_trio_task(proc, *args)

	Alias for a call to run_trio_task()
on the event loop returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop].

This is a synchronous function which takes a Trio-flavored async
function and returns nothing (the handle returned by
BaseTrioEventLoop.run_trio_task is discarded). An uncaught error
will propagate to, and terminate, the trio-asyncio loop.

	
exception trio_asyncio.TrioAsyncioDeprecationWarning

	Warning emitted if you use deprecated trio-asyncio functionality.

This inherits from FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning], not DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning], for the
same reasons described for trio.TrioDeprecationWarning [https://trio.readthedocs.io/en/stable/reference-core.html#trio.TrioDeprecationWarning].

Release history

trio-asyncio 0.15.0 (2024-04-24)

Features

	trio-asyncio now properly finalizes asyncio-flavored async generators
upon closure of the event loop. Previously, Trio’s async generator finalizers
would try to finalize all async generators in Trio mode, regardless of their
flavor, which could lead to spurious errors. (#92 [https://github.com/python-trio/trio-asyncio/issues/92])

Bugfixes

	trio-asyncio no longer raises a spurious “Event loop stopped before Future
completed!” exception if a function passed to asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run] calls
sys.exit() [https://docs.python.org/3/library/sys.html#sys.exit]. (#149 [https://github.com/python-trio/trio-asyncio/issues/149])

trio-asyncio 0.14.1 (2024-04-18)

Bugfixes

	TrioExecutor.submit(), which implements calls to
asyncio.loop.run_in_executor() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor] in a trio-asyncio program,
no longer acquires a token from its CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter] before
calling trio.to_thread.run_sync() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync].
The previous behaviour caused each worker thread to consume two tokens
rather than one, since trio.to_thread.run_sync() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync] also acquires a token.
When many tasks called run_in_executor() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor] in parallel,
this could cause a deadlock: because everyone is holding a first token, no one
can make progress by getting a second one.
(#143 [https://github.com/python-trio/trio-asyncio/issues/143])

Miscellaneous

	Updated test suite to cope with Trio 0.25.0 and later defaulting
strict_exception_groups to True. Trio 0.25.0 is now required
to run the tests, although trio-asyncio itself still supports older
versions. (#146 [https://github.com/python-trio/trio-asyncio/issues/146])

trio-asyncio 0.14.0 (2024-02-07)

Features

	trio-asyncio now implements its synchronous event loop
(which is used when the top-level of your program is an asyncio call such as
asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run], rather than a Trio call such as trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run])
using the greenlet library rather than a separate thread. This provides
some better theoretical grounding and fixes various edge cases around signal
handling and other integrations; in particular, recent versions of IPython
will no longer crash when importing trio-asyncio. Synchronous event loops have
been un-deprecated with this change, though we still recommend using an
async loop (async with trio_asyncio.open_loop(): from inside a Trio run)
where possible. (#137 [https://github.com/python-trio/trio-asyncio/issues/137])

	trio-asyncio now better respects cancellation semantics for
asyncio-to-Trio transitions. The asyncio caller now will not propagate
cancellation until the Trio callee actually terminates, and only if
the Trio callee terminates by cancellation (rather than, for example,
finishing normally because the cancel arrived too late). Additionally,
we no longer immediately cancel all Trio tasks started from asyncio
context if the entire open_loop() is cancelled; they only become
cancelled when their asyncio caller is cancelled, or when the body of
the open_loop() terminates. (#140 [https://github.com/python-trio/trio-asyncio/issues/140])

Bugfixes

	trio-asyncio no longer applies a limit to the maximum number of
asyncio callbacks (including new task creations) that can be enqueued
near-simultaneously. Previously the default limit was 10,000. A limit
may still be requested using the queue_len parameter to
open_loop(), but this is discouraged because there is no way
to fail gracefully upon exceeding the limit; it will most likely just
crash your program. (#130 [https://github.com/python-trio/trio-asyncio/issues/130])

	Fix an issue where a call to TrioEventLoop.call_exception_handler() after
the loop was closed would attempt to call a method on None. This pattern
can be encountered if an aiohttp session is garbage-collected without being
properly closed, for example. (#134 [https://github.com/python-trio/trio-asyncio/issues/134])

trio-asyncio 0.13.0 (2023-12-01)

Features

	Exiting an async with trio_asyncio.open_loop(): block now cancels
any asyncio tasks that are still running in the background, like
asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run] does, so that they have a chance to clean up
resources by running async context managers and finally
blocks. Previously such tasks would simply be abandoned to the garbage
collector, resulting in potential deadlocks and stderr spew. Note that,
like asyncio.run() [https://docs.python.org/3/library/asyncio-runner.html#asyncio.run], we do still abandon any tasks that are
started during this finalization phase and outlive the existing tasks.
(#91 [https://github.com/python-trio/trio-asyncio/issues/91])

Bugfixes

	A deadlock will no longer occur if trio_asyncio.open_loop()
is cancelled before its first checkpoint. We also now cancel and wait on
all asyncio tasks even if open_loop() terminates due
to an exception that was raised within the async with block. (#115 [https://github.com/python-trio/trio-asyncio/issues/115])

	Uncaught exceptions from asyncio tasks will now propagate out of the
trio_asyncio.open_loop() call. This has always been the
documented behavior, but didn’t actually work before.
(#121 [https://github.com/python-trio/trio-asyncio/issues/121])

	Use of loop.add_reader() or loop.add_writer() with a socket object
(rather than a file descriptor) will no longer potentially produce spurious
uncaught exceptions if the socket is closed in the reader/writer callback.
(#121 [https://github.com/python-trio/trio-asyncio/issues/121])

Miscellaneous

	trio-asyncio now requires Trio 0.22 and does not produce deprecation warnings.
Python 3.12 is now supported. Python 3.6 and 3.7 are no longer supported. (#121 [https://github.com/python-trio/trio-asyncio/issues/121])

	trio-asyncio now indicates its presence to sniffio [https://sniffio.readthedocs.io/en/latest/index.html#module-sniffio] using the
sniffio.thread_local interface that is preferred since sniffio
v1.3.0. This should be less likely than the previous approach to cause
sniffio.current_async_library() [https://sniffio.readthedocs.io/en/latest/index.html#sniffio.current_async_library] to return incorrect results due
to unintended inheritance of contextvars.
(#123 [https://github.com/python-trio/trio-asyncio/issues/123])

trio-asyncio 0.12.0 (2021-01-07)

Bugfixes

	trio-asyncio now cancels any Trio tasks that were started inside a trio-asyncio
loop (using e.g. trio_as_aio()) before it allows the trio-asyncio loop
to close. This should resolve some cases of deadlocks and “RuntimeError: Event loop
is closed” when an async with open_loop(): block is cancelled. (#89 [https://github.com/python-trio/trio-asyncio/issues/89])

	asyncio.get_running_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_running_loop] will now return the trio-asyncio event loop
(if running), instead of failing with RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]. (#99 [https://github.com/python-trio/trio-asyncio/issues/99])

	On Python versions with native contextvars support (3.7+), a Trio task
started from asyncio context (using trio_as_aio(),
trio_as_future(), etc) will now properly
inherit the contextvars of its caller. Also, if the entire
trio-asyncio loop is cancelled, such tasks will no longer let
trio.Cancelled [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Cancelled] exceptions leak into their asyncio caller. (#76 [https://github.com/python-trio/trio-asyncio/issues/76])

	Previously, cancelling the context surrounding an open_loop()
block might cause a deadlock in some cases. The ordering of operations
during loop teardown has been improved, so this shouldn’t happen
anymore. (#81 [https://github.com/python-trio/trio-asyncio/issues/81])

Deprecations and Removals

A number of functions deprecated since 0.10.0 are now removed:

	Removed

	Replacement

	wrap_generator(proc, *args)

	aio_as_trio(proc(*args))

	run_iterator(aiter)

	aio_as_trio(aiter)

	trio2aio

	aio_as_trio()

	aio2trio

	trio_as_aio()

	run_future TrioEventLoop.run_future

	run_aio_future()

	run_coroutine TrioEventLoop.run_coroutine

	run_aio_coroutine()

	wrap_trio_context(ctx)

	trio_as_aio(ctx)

	TrioEventLoop.run_trio(proc, *args)

	trio_as_aio(proc)(*args)

	run_asyncio(proc, *args)

	aio_as_trio(proc)(*args)

Miscellaneous

	trio-asyncio now requires Trio 0.15. Support for Python < 3.6 has been removed. (#82 [https://github.com/python-trio/trio-asyncio/issues/82])

	No more TrioDeprecationWarning about trio.hazmat. (#82 [https://github.com/python-trio/trio-asyncio/issues/82])

trio-asyncio 0.11.0 (2020-03-09)

Features

	Substantially reorganize monkeypatching for asyncio event loop and
event loop policy accessors, fixing support for Python 3.8. Also, stop
using features deprecated in Trio 0.12. (#66 [https://github.com/python-trio/trio-asyncio/issues/66])

Bugfixes

	Calling loop.stop manually no longer causes a deadlock when
exiting the context of trio_asyncio.open_loop (#58 [https://github.com/python-trio/trio-asyncio/issues/58])

	trio_asyncio.run() now properly returns whatever was returned by
the async function it ran, like trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run] does. (#57 [https://github.com/python-trio/trio-asyncio/issues/57])

	Replace uses of deprecated trio.open_cancel_scope() with trio.CancelScope [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CancelScope].

Deprecations and Removals

	The non-underscore-prefixed names of trio-asyncio submodules (trio_asyncio.loop,
trio_asyncio.adapter, etc) have been deprecated; public names should be
imported from trio_asyncio directly.

trio_asyncio.current_policy, trio_asyncio.TrioChildWatcher,
and trio_asyncio.TrioPolicy have been deprecated with no
replacement. current_policy is no longer used at all, and the
other two are singletons that can’t be customized so there’s no reason
to make them publicly visible.

A number of functions which were already documented as deprecated now
raise the new TrioAsyncioDeprecationWarning where
previously they provided either no runtime warning or a generic
DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning]. (#64 [https://github.com/python-trio/trio-asyncio/issues/64])

trio-asyncio 0.10.0 (2018-12-09)

Bugfixes

	Replace deprecated trio.Queue with new channels, requiring Trio 0.9 or later. (#49 [https://github.com/python-trio/trio-asyncio/issues/49])

trio-asyncio 0.9.1 (2018-09-06)

Bugfixes

	Defer creating an asyncio coroutine until asyncio mode is actually entered. (#40 [https://github.com/python-trio/trio-asyncio/issues/40])

trio-asyncio 0.9.0 (2018-08-31)

Features

	Major reorganization: The main entry point for calling asyncio
from trio is now the trio_asyncio.aio_as_trio() adapter.
Instead of calling asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop], directly access the
contextvar trio_aio_loop (aka trio_asyncio.current_loop). (#36 [https://github.com/python-trio/trio-asyncio/issues/36])

Deprecations and Removals

	run_asyncio() is deprecated: replace with a aio_as_trio() wrapper.

trio2aio() is deprecated: replace with aio_as_trio().

run_future() and TrioEventLoop.run_future() are deprecated:
replace with run_aio_future().

run_coroutine() and TrioEventLoop.run_coroutine() are
deprecated: replace with run_aio_coroutine().

TrioEventLoop.wrap_generator() is deprecated: replace with a
aio_as_trio() wrapper.

TrioEventLoop.run_iterator() is deprecated: replace with
aio_as_trio(). (#36 [https://github.com/python-trio/trio-asyncio/issues/36])

trio-asyncio 0.8.2 (2018-08-25)

Features

	sniffio.current_async_library() [https://sniffio.readthedocs.io/en/latest/index.html#sniffio.current_async_library] in a trio-asyncio program now returns
the correct value for the current mode ("trio" or "asyncio").

trio-asyncio 0.8.1 (2018-08-25)

Features

	trio_asyncio now contains an allow_asyncio() wrapper which allows you to
seamlessly mix asyncio and trio semantics:

import asyncio
import trio
from trio_asyncio import run, allow_asyncio
async def main():
 print("Sleeping 1")
 await asyncio.sleep(1)
 print("Sleeping 2")
 await trio.sleep(1)
run(allow_asyncio, main)

The problem with this solution is that Trio’s cancellations will no
longer be converted to asyncio’s CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError] within asyncio
code. This may or may not be an issue for your code. (#30 [https://github.com/python-trio/trio-asyncio/issues/30])

	While the test suite still requires Python 3.6, trio_asyncio itself
now works on Python 3.5.3 and later. (#33 [https://github.com/python-trio/trio-asyncio/issues/33])

	TrioEventLoop.run_asyncio() now supports wrapping async iterators
and async context managers, in addition to its existing support for async
functions.

trio-asyncio 0.8.0 (2018-08-03)

	Add TrioEventLoop.run_iterator() as an alias for run_generator().

	Add support for Python 3.7 via a monkey-patch to
asyncio.set_event_loop_policy() [https://docs.python.org/3/library/asyncio-policy.html#asyncio.set_event_loop_policy]. (#23 [https://github.com/python-trio/trio-asyncio/issues/23])

	Deprecate the use of “compatibility mode” / “sync event loops”, except
as a tool for running the test suites of existing asyncio projects.

trio-asyncio 0.7.5 (2018-07-23)

	Use a contextvar to represent the current trio-asyncio loop, rather
than the deprecated trio.TaskLocal.

	Use the outcome library rather than the deprecated trio.hazmat.Result.

	Better handle errors in wrapped async generators.

trio-asyncio 0.7.0 (2018-03-27)

	The @trio2aio and @aio2trio decorators now can be used to decorate
both async generator functions and async functions that take keyword
arguments.

	open_loop() now takes an optional queue_len= parameter to specify
the length of the internal callback queue (for performance tuning).

	Add BaseTrioEventLoop.synchronize().

	Monkey-patch asyncio.get_event_loop_policy() [https://docs.python.org/3/library/asyncio-policy.html#asyncio.get_event_loop_policy] and
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] so trio-asyncio works correctly in
multithreaded programs that use a different asyncio event loop in
other threads.

	Add wrap_generator() and run_generator() which adapt an asyncio-flavored
async generator to be used from Trio code.

trio-asyncio 0.5.0 (2018-02-20)

	Support contextvars on Python 3.7 and later.

	Support waiting for child processes even though Trio doesn’t (yet).

trio-asyncio 0.4.2 (2018-02-12)

	Add trio_asyncio.run().

	Fix a deadlock in SyncTrioEventLoop. Encourage people to use the
async TrioEventLoop instead.

trio-asyncio 0.4.1 (2018-02-08)

	Add TrioEventLoop.run_task() as an entry point for running Trio code
in a context that allows asyncio calls, for use when neither a Trio nor
an asyncio event loop is running.

trio-asyncio 0.4.0 (2018-02-07)

	Add support for async loops (open_loop()) and encourage their use.
Numerous functions renamed.

trio-asyncio 0.3.0 (2017-10-17)

	Initial release.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 trio_asyncio	

Index

 A
 | B
 | M
 | N
 | O
 | R
 | S
 | T
 | W

A

 	
 	aio_as_trio() (in module trio_asyncio)

 	
 	allow_asyncio() (in module trio_asyncio)

 	autoclose() (trio_asyncio.BaseTrioEventLoop method)

B

 	
 	BaseTrioEventLoop (class in trio_asyncio)

M

 	
 	
 module

 	trio_asyncio

N

 	
 	no_autoclose() (trio_asyncio.BaseTrioEventLoop method)

O

 	
 	open_loop() (in module trio_asyncio)

R

 	
 	run() (in module trio_asyncio)

 	run_aio_coroutine() (in module trio_asyncio)

 	(trio_asyncio.BaseTrioEventLoop method)

 	run_aio_future() (in module trio_asyncio)

 	(trio_asyncio.BaseTrioEventLoop static method)

 	
 	run_aio_generator() (in module trio_asyncio)

 	run_trio() (in module trio_asyncio)

 	run_trio_task() (in module trio_asyncio)

 	(trio_asyncio.BaseTrioEventLoop method)

S

 	
 	synchronize() (trio_asyncio.BaseTrioEventLoop method)

T

 	
 	trio_as_aio() (in module trio_asyncio)

 	trio_as_future() (trio_asyncio.BaseTrioEventLoop method)

 	
 trio_asyncio

 	module

 	
 	trio_asyncio.current_loop (in module trio_asyncio)

 	TrioAsyncioDeprecationWarning

 	TrioEventLoop (class in trio_asyncio)

 	TrioExecutor (class in trio_asyncio)

W

 	
 	wait_stopped() (trio_asyncio.BaseTrioEventLoop method)

 nav.xhtml

 Table of Contents

 		
 trio-asyncio: A re-implementation of the asyncio mainloop on top of Trio

 		
 Principles

 		
 Async function “flavors”

 		
 Flavor versus context

 		
 Flavor transitions are explicit

 		
 trio-asyncio’s place in the asyncio stack

 		
 Event loop implementations

 		
 Usage

 		
 Startup and shutdown

 		
 Trio main loop

 		
 Asyncio main loop

 		
 Compatibility issues

 		
 Cross-calling

 		
 Calling asyncio from Trio

 		
 Calling Trio from asyncio

 		
 Multiple asyncio loops

 		
 Errors and cancellations

 		
 asyncio feature support notes

 		
 Deferred calls

 		
 Worker threads

 		
 File descriptors

 		
 Signals

 		
 Subprocesses

 		
 Low-level API reference

 		
 BaseTrioEventLoop

 		
 TrioEventLoop

 		
 trio_asyncio.current_loop

 		
 run_aio_future()

 		
 run_aio_generator()

 		
 run_aio_coroutine()

 		
 run_trio()

 		
 run_trio_task()

 		
 TrioAsyncioDeprecationWarning

 		
 Release history

 		
 trio-asyncio 0.15.0 (2024-04-24)

 		
 Features

 		
 Bugfixes

 		
 trio-asyncio 0.14.1 (2024-04-18)

 		
 Bugfixes

 		
 Miscellaneous

 		
 trio-asyncio 0.14.0 (2024-02-07)

 		
 Features

 		
 Bugfixes

 		
 trio-asyncio 0.13.0 (2023-12-01)

 		
 Features

 		
 Bugfixes

 		
 Miscellaneous

 		
 trio-asyncio 0.12.0 (2021-01-07)

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Miscellaneous

 		
 trio-asyncio 0.11.0 (2020-03-09)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 trio-asyncio 0.10.0 (2018-12-09)

 		
 Bugfixes

 		
 trio-asyncio 0.9.1 (2018-09-06)

 		
 Bugfixes

 		
 trio-asyncio 0.9.0 (2018-08-31)

 		
 Features

 		
 Deprecations and Removals

 		
 trio-asyncio 0.8.2 (2018-08-25)

 		
 Features

 		
 trio-asyncio 0.8.1 (2018-08-25)

 		
 Features

 		
 trio-asyncio 0.8.0 (2018-08-03)

 		
 trio-asyncio 0.7.5 (2018-07-23)

 		
 trio-asyncio 0.7.0 (2018-03-27)

 		
 trio-asyncio 0.5.0 (2018-02-20)

 		
 trio-asyncio 0.4.2 (2018-02-12)

 		
 trio-asyncio 0.4.1 (2018-02-08)

 		
 trio-asyncio 0.4.0 (2018-02-07)

 		
 trio-asyncio 0.3.0 (2017-10-17)

_static/plus.png

_static/file.png

_static/minus.png

